

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT: NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR)		
QUALIFICATION CODE: 07BOSC	LEVEL: 7	
COURSE CODE: MIB701S	COURSE NAME: MICROBIOLOGY	
SESSION: JUNE 2022	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER(S)	DR MUNYARADZI ZIVUKU	
MODERATOR:	DR RONNIE BOCK	

Instructions

- 1. Answer **all** questions in section A and any **three** questions from section B
- 2. Answer the questions in the booklet provided
- 3. Write clearly and neatly
- 4. All written work MUST be done in blue or black ink
- 5. Mark all answers clearly with their respective question numbers

THIS QUESTION PAPER CONSISTS OF 4 PAGES

(INCLUDING THIS FRONT PAGE)

SECT	ION A (4	0)
QUES	STION 1 (2	20)
1.1	Define generation time.	(2)
1.2	Given that the generation time of <i>E coli</i> is 20 minutes. Determine the number of	
	E coli present after 3 hours if at the beginning there were only two cells.	(4)
1.3	Discuss the importance of D-value in the food industry.	(4)
1.4	Detail a procedure you would use to isolate (from wild) and culture an antibiotic	
	producing or an antibiotic resistant microorganism. (1	0)
QUES	STION 2 (2	20)
2.1	Discuss four methods of maintenance and preservation of pure cultures. ((8)
2.2	A microbiologist technician was given the following selective media -Brilliant green	
	selenite broth to isolate and identify some microorganism in the laboratory. T	he
	composition of Brilliant Green Selenite broth are given in the table.	
	Composition of Brilliant green selenite broth	
	Typical formula (g/l)	
	Peptone5.0	
	D-mannitol5.0	
	Yeast extract5.0	
	Sodium selenite4.0	
	Dipotassium phosphate2.65	
	Monopotassium phosphate1.02	
	Brilliant green0.05	
	pH: 7.4+/- 0.2 at 25 degrees	
2.2.1	State one type of organism isolated with brilliant green selenite broth ((1)
		100
2.2.2	Evaluate the composition of BSG broth media in relation to its role in isolating and	
2.2.2		(7)

and industrial application. Briefly, give an analysis of the mechanism and its

(4)

effectiveness in the control of pathogens.

SECTION B (60)

Answer any three questions from this section. Each question carries 20 marks.

QUESTION 3 (20)

3.1 At some point in the development of microbiology, there was a challenge of linking the causative agent of the disease to the disease itself. Briefly outline the various lines of proof used by Robert Koch to link the pathogen and the disease. (10)

3.2 A student carried out an experiment to demonstrate the growth patterns of bacteria with different oxygen requirements when grown in MacConkey broth. The results the student obtained are shown in Figure 1.

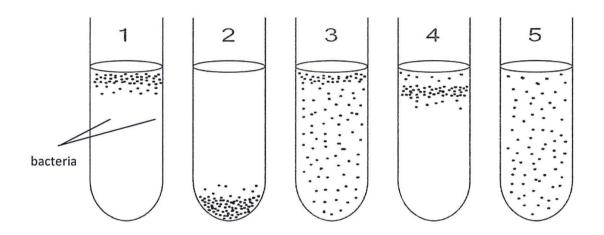


Figure 1: Growth patterns of different bacteria based on oxygen requirements.

Using the information in Figure 1, deduce the different types of bacteria based on the oxygen requirements. (10)

QUESTION 4 (20)

- 4.1 Describe the principle on which the Gram stain is based. (3)
- 4.2 Explain why the oil immersion objective marked with black rings are immersed in lens oil during use. (2)
- 4.3 Differentiate between Gram positive and Gram-negative bacteria. (5)
- 4.4 Evaluate the use of positive and negative staining techniques in the identification and classification of bacteria. (10)

QUES	QUESTION 5	
5.1	What is a fastidious microorganism?	(2)
5.1.2	How does the microbiologist overcome the challenges of culturing fastidious	
	microorganism. Give one example in your answer	(3)
5.2	Discuss the exchange of genetic information in bacteria.	(15)
QUESTION 6 (20)		
6.1	Define the term indicator microorganisms and their significance as diagnostic too	ols in
	municipal water testing	(3)
6.2	Explain why it is advisable to monitor Biological Oxygen Demand (BOD) before	
	discharging raw sewage into rivers.	(3)
6.3	Describe how Bacillus thuringiensis or its toxin is used as a pesticide in	
	Agriculture.	(6)
6.4	Describe the role of lactic acid bacteria in the manufacture of fermented milk	
	products such as cultured milk.	(8)

END OF EXAMINATION QUESTION PAPER